Premium
An efficient spectral‐Galerkin method based on a dimension reduction scheme for eigenvalue problems of Schrödinger equations
Author(s) -
Zhang Jun,
Lin Fubiao,
Wang JinRong
Publication year - 2019
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.5500
Subject(s) - mathematics , eigenvalues and eigenvectors , eigenfunction , sobolev space , mathematical analysis , galerkin method , domain (mathematical analysis) , bounded function , truncation error , finite element method , physics , quantum mechanics , thermodynamics
In this paper, we propose an efficient spectral‐Galerkin method based on a dimension reduction scheme for eigenvalue problems of Schrödinger equations. Firstly, we carry out a truncation from a three‐dimensional unbounded domain to a bounded spherical domain. By using spherical coordinate transformation and spherical harmonic expansion, we transform the original problem into a series of one‐dimensional eigenvalue problem that can be solved effectively. Secondly, we introduce a weighted Sobolev space to treat the singularity in the effective potential. Using the property of orthogonal polynomials in weighted Sobolev space, the error estimate for the approximate eigenvalues and corresponding eigenfunctions are proved. Error estimates show that our numerical method can achieve spectral accuracy for approximate eigenvalues and eigenfunctions. Finally, we give some numerical examples to demonstrate the efficiency of our algorithms and the correctness of the theoretical results.