z-logo
Premium
A multicomponent flow model in deformable porous media
Author(s) -
Detmann Bettina,
Krejčí Pavel
Publication year - 2019
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.5482
Subject(s) - porous medium , degenerate energy levels , capillary action , mathematics , formalism (music) , mechanics , fluid mechanics , continuum mechanics , fluid dynamics , porosity , classical mechanics , physics , thermodynamics , geology , geotechnical engineering , art , musical , quantum mechanics , visual arts
We propose a model for multicomponent flow of immiscible fluids in a deformable porous medium accounting for capillary hysteresis. Oil, water, and air in the soil pores offer a typical example of a real situation occurring in practice. We state the problem within the formalism of continuum mechanics as a slow diffusion process in Lagrange coordinates. The balance laws for volumes, masses, and momentum lead to a degenerate parabolic PDE system. In the special case of a rigid solid matrix material and three fluid components, we prove under further technical assumptions that the system is mathematically well posed in a small neighborhood of an equilibrium.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom