z-logo
Premium
Semilinear wave equation with time dependent potential
Author(s) -
Visciglia Nicola
Publication year - 2004
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.542
Subject(s) - mathematics , function (biology) , lambda , wave equation , mathematical analysis , mathematical physics , constant (computer programming) , combinatorics , physics , quantum mechanics , evolutionary biology , computer science , biology , programming language
We consider the following semilinear wave equation:for ( t , x ) ∈ ℝ t × ℝ   x 3 . We prove that if the potential V ( t , x ) is a measurable function that satisfies the following decay assumption: ∣ V ( t , x )∣⩽ C (1+ t )   −σ   0(1+∣ x ∣)   −(2+σ   0 )for a.e. ( t , x ) ∈ ℝ t × ℝ   x 3where C , σ 0 >0 are real constants, then for any real number λ that satisfies ${1+\sqrt{2}< \lambda <3}$ there exists a real number ρ( f , g ,λ)>0 such that the equation has a global solution provided that 0<ρ⩽ρ( f , g ,λ). Copyright © 2004 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom