z-logo
Premium
A note on the matrix Sturm‐Liouville operators with principal functions
Author(s) -
Yokus Nihal,
Coskun Nimet
Publication year - 2018
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.5383
Subject(s) - mathematics , sturm–liouville theory , invertible matrix , eigenvalues and eigenvectors , gravitational singularity , pure mathematics , operator (biology) , differential operator , matrix (chemical analysis) , matrix function , function (biology) , boundary value problem , mathematical analysis , symmetric matrix , chemistry , materials science , repressor , biology , composite material , biochemistry , physics , quantum mechanics , evolutionary biology , transcription factor , gene
In this study, we take under investigation principal functions corresponding to the eigenvalues and the spectral singularities of the Operator L generated in L 2 ( R + , E ) by the differential expression l ( y ) = − y ′ ′ + Q ( x ) y , x ∈ R + : = [ 0 , ∞ ) and the boundary condition ( A 0  +  A 1 λ  +  A 2 λ 2 ) y ′ (0, λ ) − ( B 0  +  B 1 λ  +  B 2 λ 2 ) y (0, λ ) = 0, where Q is a matrix‐valued function and A i , B i , i  = 0,1,2 are non‐selfadjoint matrices also A 2 , B 2 are invertible.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom