z-logo
Premium
Global non‐existence of solutions of a class of wave equations with non‐linear damping and source terms
Author(s) -
Messaoudi Salim A.,
Houari Belkacem Said
Publication year - 2004
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.522
Subject(s) - mathematics , wave equation , dirichlet boundary condition , class (philosophy) , mathematical analysis , energy (signal processing) , boundary value problem , energy method , statistics , artificial intelligence , computer science
In this paper we consider the non‐linear wave equation$${u_{tt}}-\Delta u_t-{\rm div}({\vert\nabla u\vert^{\alpha-2}\nabla u})-{\rm div}({\vert\nabla u_t\vert^{\beta-2}\nabla u_t})+{a\vert u_t\vert^{m-2}u_t=b\vert u\vert^{p-2}u}$$a,b >0, associated with initial and Dirichlet boundary conditions. We prove, under suitable conditions on α,β,m,p and for negative initial energy, a global non‐existence theorem. This improves a result by Yang ( Math. Meth. Appl. Sci. 2002; 25 :825–833), who requires that the initial energy be sufficiently negative and relates the global non‐existence of solutions to the size of Ω. Copyright © 2004 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom