z-logo
Premium
Structure of positive solutions for quasilinear elliptic systems—degenerate ecological models
Author(s) -
Guo Zongming,
Yang Huisheng
Publication year - 2004
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.520
Subject(s) - degenerate energy levels , monotone polygon , mathematics , bifurcation , pure mathematics , bifurcation theory , mathematical physics , mathematical analysis , combinatorics , nonlinear system , geometry , physics , quantum mechanics
We study the degenerate ecological models$$ \matrix{{-\Delta_pu}=a\vert u\vert^{p-2}u\vert1-u\vert^{\alpha-1}(1-u)- b\vert u\vert ^{p-2}uv,& x\in \Omega \cr {-\Delta_qv}=c\vert v\vert^{q-2}v\vert1-v\vert^{\beta-1}(1-v)- d\vert v\vert ^{q-2}uv, & x\in \Omega\cr {u=v=0,}\hfill & {x\in\partial \Omega}}$$where ${p,q>1, {\Delta_pu}={{\rm div}(\vert Du\vert^{p-2}Du)},{{\Delta_q}v={{\rm div}(\vert Dv\vert^{q-2}Dv)}}}, a,b,c,d,\alpha, \beta$ are positive numbers. The structure of positive solutions of the models is discussed via bifurcation theory and monotone techniques. Copyright © 2004 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom