z-logo
Premium
The critical exponent for a time fractional diffusion equation with nonlinear memory
Author(s) -
Zhang Quanguo,
Li Yaning
Publication year - 2018
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.5169
Subject(s) - mathematics , exponent , nonlinear system , critical exponent , order (exchange) , diffusion , fractional calculus , mathematical analysis , mathematical physics , quantum mechanics , physics , geometry , philosophy , linguistics , finance , scaling , economics
In this paper, we determine the Fujita critical exponent of the following time fractional subdiffusion equation with nonlinear memory0 C D t α u − △ u =0 I t 1 − γ| u | p − 1 u , x ∈ R N , t > 0 ,u ( 0 , x ) = u 0 ( x ) , x ∈ R N ,where 0 <  α  < 1, 0 ≤  γ  < 1, γ  ≤  α , p  > 1, u 0 ∈ C 0R N,0I t 1 − γdenotes left Riemann‐Liouville fractional integral of order 1 −  γ . Let β  = 1 −  γ . We prove that, if 1 < p ≤ p ∗ = max 1 + 2 ( α + β )2 + α N − 2 ( α + β )+, 1 γ, any nontrivial positive solution blows up in a finite time. If p  >  p ∗ and ‖ u 0‖L q cR Nis sufficiently small, where q c = N α ( p − 1 ) 2 ( α + β ) , then u exists globally.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom