z-logo
Premium
Inverse problems for first‐order differential systems with periodic 2 × 2 matrix potentials and quasi‐periodic boundary conditions
Author(s) -
Currie Sonja,
Roth Thomas T.,
Watson Bruce A.
Publication year - 2018
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.5113
Subject(s) - mathematics , eigenvalues and eigenvectors , mathematical analysis , inverse , periodic boundary conditions , boundary value problem , integrable system , scalar (mathematics) , matrix (chemical analysis) , matrix function , mathematical physics , pure mathematics , symmetric matrix , geometry , physics , materials science , quantum mechanics , composite material
A generalisation is given of the inverse problem considered in S. Currie, B.A. Watson, and T.T. Roth. First‐order systems in C 2 on R with periodic matrix potentials and vanishing instability intervals, Math. Meth. Appl. Sci. 38 (2015), 4435‐4447. In particular, the self‐adjoint first‐order system, J Y   ′  +  Q Y  =  λ Y , with integrable, real, symmetric, and π ‐periodic, 2 × 2 matrix potential Q is considered, where J =0 1− 1 0. It is shown that all eigenvalues to the above equation with boundary conditions Y ( π ) = ± R ( θ ) Y (0), where R ( θ ) is the rotation matrixcos θ sin θ− sin θ cos θ, θ ∈ [ 0 , π ] , are double eigenvalues if and only if Q  =  r I for some real scalar valued integrable function r .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom