z-logo
Premium
Well‐posedness and asymptotic analysis for a Penrose–Fife type phase field system
Author(s) -
Rossi Riccarda
Publication year - 2004
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.510
Subject(s) - mathematics , type (biology) , field (mathematics) , phase (matter) , mathematical analysis , pure mathematics , physics , geology , quantum mechanics , paleontology
In this paper, an asymptotic analysis of the (non‐conserved) Penrose–Fife phase field system for two vanishing time relaxation parameters ε and δ is developed, in analogy with the similar analyses for the phase field model proposed by G. Caginalp ( Arch. Rational Mech. Anal . 1986; 92 :205–245), which were carried out by Rossi and Stoth ( Adv. Math. Sci. Appl . 2003; 13 :249–271; Quart. Appl. Math . 1995; 53 :695–700). Although formally the singular limits for ε ↓ 0 and for ε and δ ↓ 0 are, respectively, the viscous Cahn–Hilliard equation and the Cahn–Hilliard equation, it turns out that the Penrose–Fife system is indeed a bad approximation for these equations. Therefore, we consider an alternative approximating phase field system, which could be viewed as a generalization of the classical Penrose–Fife phase field system, featuring a double non‐linearity given by two maximal monotone graphs. A well‐posedness result is proved for such a system, and it is shown that the solutions converge to the unique solution of the viscous Cahn–Hilliard equation as ε ↓ 0, and of the Cahn–Hilliard equation as ε ↓ 0 and δ ↓ 0. Copyright © 2004 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom