Premium
Zero‐Hopf bifurcation in the Volterra‐Gause system of predator‐prey type
Author(s) -
Ginoux JeanMarc,
Llibre Jaume
Publication year - 2017
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.4569
Subject(s) - mathematics , hopf bifurcation , zero (linguistics) , type (biology) , order (exchange) , mathematical analysis , control theory (sociology) , bifurcation , nonlinear system , physics , ecology , control (management) , linguistics , philosophy , finance , quantum mechanics , economics , biology , management
We prove that the Volterra‐Gause system of predator‐prey type exhibits 2 kinds of zero‐Hopf bifurcations for convenient values of their parameters. In the first, 1 periodic solution bifurcates from a zero‐Hopf equilibrium, and in the second, 4 periodic solutions bifurcate from another zero‐Hopf equilibrium. This study is done using the averaging theory of second order.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom