Premium
Global well‐posedness and blow‐up criterion for the periodic quasi‐geostrophic equations in Lei‐Lin‐Gevrey spaces
Author(s) -
Benhamed Moez
Publication year - 2017
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.4543
Subject(s) - mathematics , uniqueness , geostrophic wind , mathematical analysis , initial value problem , dissipation , type (biology) , physics , mechanics , thermodynamics , ecology , biology
In this paper we consider a periodic 2‐dimensional quasi‐geostrophic equations with subcritical dissipation. We show the global existence and uniqueness of the solution θ ∈ C ( [ 0 , T ] , Y a , σ 1 − 2 α ( T 2 ) ) for small initial data in the Lei‐Lin‐Gevrey spacesY a , σ 1 − 2 α ( T 2 ) . Moreover, we establish an exponential type explosion in finite time of this solution.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom