Premium
Global solutions to Keller‐Segel‐Navier‐Stokes equations with a class of large initial data in critical Besov spaces
Author(s) -
Yang Minghua
Publication year - 2017
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.4538
Subject(s) - mathematics , navier–stokes equations , compressibility , initial value problem , mathematical analysis , class (philosophy) , fourier transform , besov space , decomposition , non dimensionalization and scaling of the navier–stokes equations , hagen–poiseuille flow from the navier–stokes equations , cauchy distribution , mathematical physics , pure mathematics , functional analysis , physics , interpolation space , ecology , biochemistry , chemistry , artificial intelligence , biology , computer science , gene , thermodynamics
In this article, we consider the Cauchy problem to Keller‐Segel equations coupled to the incompressible Navier‐Stokes equations. Using the Fourier frequency localization and the Bony paraproduct decomposition, let u F := e t Δ u 0 ; we prove that there exist 2 positive constants σ 0 and C 0 such that if the gravitational potential ϕ ∈B ˙p , 1 3 / p ( R 3 ) and the initial data ( u 0 , n 0 , c 0 ) satisfyu F · ∇ u FL 1 ( R + ;B ˙p , 1 − 1 + 3 / p ( R 3 ) ) +n 0 , c 0B ˙q , 1 − 2 + 3 / q ( R 3 ) ×B ˙q , 1 3 / q ( R 3 )× expC 0u 0B ˙p , 1 − 1 + 3 / p ( R 3 ) + 12⩽ σ 0for some p , q with 1 ⩽ p , q < ∞ , 1 p + 1 q > 1 3 , 1 ⩽ q < 6 and 1 min { p , q } − 1 max { p , q } ⩽ 1 3 , then the global solutions can be established in critical Besov spaces.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom