z-logo
Premium
Self‐similar asymptotic profile of the solution to a nonlinear evolution equation with critical dissipation
Author(s) -
D'Abbicco M.,
Ebert M. R.,
Lucente S.
Publication year - 2017
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.4469
Subject(s) - mathematics , dissipation , dimension (graph theory) , nonlinear system , integer (computer science) , evolution equation , space (punctuation) , mathematical analysis , power (physics) , mathematical physics , pure mathematics , physics , thermodynamics , quantum mechanics , linguistics , philosophy , computer science , programming language
In this paper, we obtain optimal decay estimates for the solutions to an evolution equation with critical, structural, dissipation, and absorbing power nonlinearity:u t t +Δ2 θ u + 2 μ ( − Δ ) θ u t + | u t | p − 1u t = 0 , t ≥ 0 , x ∈ R n ,with  μ >0, θ is a positive integer, and  p >1+4 θ / n , in space dimension  n ∈(2 θ ,4 θ ). We use these estimates to find the self‐similar asymptotic profile of the solutions, when  μ ≥1.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom