z-logo
Premium
Solutions in Bessel‐potential spaces for wave equations with nonlinear damping
Author(s) -
Banquet Carlos,
Ferreira Lucas C. F.,
VillamizarRoa Élder J.
Publication year - 2017
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.4412
Subject(s) - bessel function , mathematics , uniqueness , nonlinear system , mathematical analysis , class (philosophy) , wave equation , space (punctuation) , bessel process , physics , classical orthogonal polynomials , linguistics , philosophy , gegenbauer polynomials , quantum mechanics , artificial intelligence , computer science , orthogonal polynomials
We consider a semilinear wave equation with nonlinear damping in the whole spaceR n , n ⩾ 2 . Local‐in‐time existence and uniqueness results are obtained in the class of Bessel‐potential spacesH p s = ( I − Δ ) − s / 2L p . Copyright © 2017 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom