z-logo
Premium
Stability analysis of mathematical models for nonlinear growth kinetics of breast cancer stem cells
Author(s) -
Guo Chengjun,
Ahmed Sameed,
Guo Chengxian,
Liu Xinfeng
Publication year - 2017
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.4389
Subject(s) - linearization , nonlinear system , uniqueness , mathematics , stability (learning theory) , ordinary differential equation , cancer stem cell , breast cancer , differential equation , exponential stability , partial differential equation , cancer , mathematical analysis , computer science , medicine , physics , quantum mechanics , machine learning
Cancer stem cells are responsible for tumor survival and resurgence and are thus essential in developing novel therapeutic strategies against cancer. Mathematical models can help understand cancer stem and differentiated cell interaction in tumor growth, thus having the potential to help in designing experiments to develop novel therapeutic strategies against cancer. In this paper, by using theory of functional and ordinary differential equations, we study the existence and stability of nonlinear growth kinetics of breast cancer stem cells. First, we provide a sufficient condition for the existence and uniqueness of the solution for nonlinear growth kinetics of breast cancer stem cells. Then we study the uniform asymptotic stability of the zero solution. By using linearization techniques, we also provide a criteria for uniform asymptotic stability of a nontrivial steady‐state solution with and without time delays. We present a theorem from complex analysis that gives certain conditions that allow for this criteria to be satisfied. Next, we apply these theorems to a special case of the system of functional differential equations that has been used to model nonlinear growth kinetics of breast cancer stem cells. The theoretical results are further justified by numerical testing examples. Consistent with the theories, our numerical examples show that the time delays can disrupt the stability. All the results can be easily extended to study more general cell lineage models. Copyright © 2017 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here