z-logo
Premium
Inverse spectral problems for differential pencils with boundary conditions dependent on the spectral parameter
Author(s) -
Wang Yu Ping,
Yurko V.A.
Publication year - 2016
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.4235
Subject(s) - mathematics , eigenvalues and eigenvectors , inverse , boundary value problem , type (biology) , mathematical analysis , differential (mechanical device) , differential equation , spectral properties , boundary (topology) , inverse problem , pure mathematics , geometry , ecology , chemistry , physics , computational chemistry , quantum mechanics , engineering , biology , aerospace engineering
In this paper, we discuss two inverse problems for differential pencils with boundary conditions dependent on the spectral parameter. We will prove the Hochstadt–Lieberman type theorem of [Disp. Item 1. lu:=−u′′+[q(x)+2ρp(x)]u=ρ2u,x∈(0,π) ...]–[Disp. Item 3. V(u):=u′(π,ρ)+(H1ρ+H0)u(π,ρ)=0, ...] except for arbitrary one eigenvalue and the Borg type theorem of [Disp. Item 1. lu:=−u′′+[q(x)+2ρp(x)]u=ρ2u,x∈(0,π) ...]–[Disp. Item 3. V(u):=u′(π,ρ)+(H1ρ+H0)u(π,ρ)=0, ...] except for at most arbitrary two eigenvalues, respectively. The new results are generalizations of the related results. Copyright © 2016 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom