z-logo
Premium
Characterizations of Sobolev spaces associated to operators satisfying off‐diagonal estimates on balls
Author(s) -
Zhang Junqiang,
Chang DerChen,
Yang Dachun
Publication year - 2016
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.4206
Subject(s) - mathematics , sobolev space , diagonal , bounded function , type (biology) , operator (biology) , quadratic form (statistics) , measure (data warehouse) , euclidean space , combinatorics , order (exchange) , space (punctuation) , pure mathematics , elliptic operator , mathematical analysis , characterization (materials science) , philosophy , materials science , repressor , database , ecology , linguistics , chemistry , computer science , biology , biochemistry , geometry , transcription factor , finance , economics , gene , nanotechnology
Let ( X , d , μ ) be a metric measure space of homogeneous type and L be a one‐to‐one operator of type ω onL 2 ( X ) for ω ∈[0,  π /2). In this article, under the assumptions that L has a bounded H ∞ ‐functional calculus onL 2 ( X ) and satisfies ( p L ,  q L ) off‐diagonal estimates on balls, where p L ∈[1, 2) and q L ∈(2,  ∞ ], the authors establish a characterization of the Sobolev spaceW ̇L α , p ( X ) , defined via L α /2 , of order α ∈(0, 2] for p ∈( p L ,  q L ) by means of a quadratic function S α ,  L . As an application, the authors show that for the degenerate elliptic operator L w : =−  w  − 1 div( A ∇) and the Schrödinger type operatorL ˜w : = L w + a | · | − 2with a ∈(0,  ∞ ) on the weighted Euclidean space ( R n , | · | , w ( x ) d x ) with A being real symmetric, if n ⩾3, w ∈ A q ( R n ) ∩ R H r ( R n ) with q ∈[1, 2], r ∈n n − 2 , ∞, p ∈(1,  ∞ ) and α ∈ 0 , min 2 + n 1 − 1 r − q ,n p1 − 1 rwith q + 1 r < 1 + 2 n , then, for all f ∈ D ( L w ) ∩ DL ˜w, ∥L ˜w α / 2 ( f ) ∥L w p ( R n ) ) ∼ ∥ L w α / 2 ( f ) ∥L w p ( R n ) , where the implicit equivalent positive constants are independent of f ,A q ( R n ) denotes the class of Muckenhoupt weights, R H r ( R n ) the reverse Hölder class, and D ( L w ) and DL ˜wthe domains of L w andL ˜w , respectively. Copyright © 2016 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom