z-logo
Premium
Global well posedness of 3D‐NSE in Fourier–Lei–Lin spaces
Author(s) -
Jlali Lotfi
Publication year - 2016
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.4193
Subject(s) - mathematics , fourier transform , homogeneous , norm (philosophy) , mathematical analysis , compressibility , initial value problem , space (punctuation) , viscosity , fourier analysis , physics , combinatorics , linguistics , philosophy , political science , law , thermodynamics , quantum mechanics
In this paper, we prove a global well posedness of the three‐dimensional incompressible Navier–Stokes equation under an initial data, which belong to the non‐homogeneous Fourier–Lei–Lin spaceX − 1 , σfor σ ⩾ − 1 and if the norm of the initial data in the Lei–Lin spaceX − 1is controlled by the viscosity. Copyright © 2016 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom