Premium
Global well posedness of 3D‐NSE in Fourier–Lei–Lin spaces
Author(s) -
Jlali Lotfi
Publication year - 2016
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.4193
Subject(s) - mathematics , fourier transform , homogeneous , norm (philosophy) , mathematical analysis , compressibility , initial value problem , space (punctuation) , viscosity , fourier analysis , physics , combinatorics , linguistics , philosophy , political science , law , thermodynamics , quantum mechanics
In this paper, we prove a global well posedness of the three‐dimensional incompressible Navier–Stokes equation under an initial data, which belong to the non‐homogeneous Fourier–Lei–Lin spaceX − 1 , σfor σ ⩾ − 1 and if the norm of the initial data in the Lei–Lin spaceX − 1is controlled by the viscosity. Copyright © 2016 John Wiley & Sons, Ltd.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom