Premium
Matrix valued adaptive cross approximation
Author(s) -
Rjasanow S.,
Weggler L.
Publication year - 2016
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.4174
Subject(s) - mathematics , interpolation (computer graphics) , matrix (chemical analysis) , boundary value problem , maxwell's equations , rate of convergence , partial differential equation , mathematical analysis , convergence (economics) , boundary element method , finite element method , key (lock) , computer science , classical mechanics , physics , computer security , economics , thermodynamics , economic growth , motion (physics) , materials science , composite material
A new variant of the Adaptive Cross Approximation (ACA) for approximation of dense block matrices is presented. This algorithm can be applied to matrices arising from the Boundary Element Methods (BEM) for elliptic or Maxwell systems of partial differential equations. The usual interpolation property of the ACA is generalised for the matrix valued case. Some numerical examples demonstrate the efficiency of the new method. The main example will be the electromagnetic scattering problem, that is, the exterior boundary value problem for the Maxwell system. Here, we will show that the matrix valued ACA method works well for high order BEM, and the corresponding high rate of convergence is preserved. Another example shows the efficiency of the new method in comparison with the standard technique, whilst approximating the smoothed version of the matrix valued fundamental solution of the time harmonic Maxwell system. Copyright © 2016 John Wiley & Sons, Ltd.