z-logo
Premium
Initial boundary value problem for a class of non‐linear strongly damped wave equations
Author(s) -
Zhijian Yang
Publication year - 2003
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.412
Subject(s) - mathematics , boundary value problem , mathematical analysis , class (philosophy) , galerkin method , initial value problem , stability (learning theory) , polynomial , order (exchange) , wave equation , zero (linguistics) , boundary (topology) , nonlinear system , physics , linguistics , philosophy , finance , quantum mechanics , artificial intelligence , machine learning , computer science , economics
The paper studies the existence, asymptotic behaviour and stability of global solutions to the initial boundary value problem for a class of strongly damped non‐linear wave equations. By a H00.5ptk‐Galerkin approximation scheme, it proves that the above‐mentioned problem admits a unique classical solution depending continuously on initial data and decaying to zero as t→+∞as long as the non‐linear terms are sufficiently smooth; they, as well as their derivatives or partial derivatives, are of polynomial growth order and the initial energy is properly small. Copyright © 2003 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom