z-logo
Premium
Blow‐up estimates for a quasi‐linear reaction–diffusion system
Author(s) -
Zuodong Yang,
Qishao Lu
Publication year - 2003
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.409
Subject(s) - mathematics , reaction–diffusion system , homogeneous , diffusion , dirichlet boundary condition , class (philosophy) , mathematical analysis , dirichlet distribution , boundary value problem , dirichlet problem , pure mathematics , combinatorics , physics , thermodynamics , artificial intelligence , computer science
In this paper, some sufficient conditions under which the quasilinear elliptic system ‐div(∣∇ u ∣ p‐2 ∇ u ) = u   m   1v   n   1, ‐div(∣∇ u ∣ q‐2 ∇ u ) = u   m   2v   n   2in ℝ N ( N ≥3) has no radially symmetric positive solution is derived. Then by using this non‐existence result, blow‐up estimates for a class of quasilinear reaction–diffusion systems u t = div (∣∇ u ∣ p‐2 ∇ u )+ u   m   1v   n   1,vt = div(∣∇ v ∣ q‐2 ∇ v ) + u   m   2v   n   2with the homogeneous Dirichlet boundary value conditions are obtained. Copyright © 2003 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom