z-logo
Premium
Boundary homogenization for a triharmonic intermediate problem
Author(s) -
Arrieta José M.,
Ferraresso Francesco,
Lamberti Pier Domenico
Publication year - 2018
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.4025
Subject(s) - homogenization (climate) , mathematics , bounded function , mathematical analysis , perturbation (astronomy) , homogeneous , boundary value problem , euclidean geometry , geometry , combinatorics , physics , biodiversity , ecology , biology , quantum mechanics
We consider the triharmonic operator subject to homogeneous boundary conditions of intermediate type on a bounded domain of the N‐dimensional Euclidean space. We study its spectral behaviour when the boundary of the domain undergoes a perturbation of oscillatory type. We identify the appropriate limit problems that depend on whether the strength of the oscillation is above or below a critical threshold. We analyse in detail the critical case that provides a typical homogenization problem leading to a strange boundary term in the limit problem. Copyright © 2016 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom