Premium
A novel attempt for finding comparatively accurate solution for sine‐Gordon equation comprising Riesz space fractional derivative
Author(s) -
Gupta A. K.,
Ray S. Saha
Publication year - 2016
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.3736
Subject(s) - mathematics , fractional calculus , chebyshev filter , wavelet , mathematical analysis , space (punctuation) , interpolation (computer graphics) , fourier transform , computer science , animation , computer graphics (images) , artificial intelligence , operating system
In this paper, a numerical procedure involving Chebyshev wavelet method has been implemented for computing the approximate solution of Riesz space fractional sine‐Gordon equation (SGE). Two‐dimensional Chebyshev wavelet method is implemented to calculate the numerical solution of space fractional SGE. The fractional SGE is considered as an interpolation between the classical SGE (corresponding to α = 2) and nonlocal SGE (corresponding to α = 1). As a consequence, the approximate solutions of fractional SGE obtained by using Chebyshev wavelet approach were compared with those derived by using modified homotopy analysis method with Fourier transform. Copyright © 2015 John Wiley & Sons, Ltd.