z-logo
Premium
Global dynamics and bifurcation of a perturbed Sigmoid Beverton–Holt difference equation
Author(s) -
Kulenović M. R. S.,
Moranjkić S.,
Nurkanović Z.
Publication year - 2016
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.3722
Subject(s) - mathematics , attractor , sigmoid function , bifurcation , pure mathematics , mathematical analysis , nonlinear system , physics , quantum mechanics , machine learning , artificial neural network , computer science
T. Wanner We investigate global dynamics of the equationx n + 1 =x n − 1 2b x nx n − 1 + c x n − 1 2 + f ,n = 0 , 1 , 2 , … ,where the parameters b , c , and f are nonnegative numbers with condition b + c > 0, f ≠ 0 and the initial conditions x −1 , x 0 are arbitrary nonnegative numbers such that x −1 + x 0 >0. We obtain precise characterization of basins of attraction of all attractors of this equation and describe the dynamics in terms of bifurcations of period‐two solutions. Copyright © 2015 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom