z-logo
Premium
Boundedness in a two‐dimensional attraction–repulsion system with nonlinear diffusion
Author(s) -
Li Xie
Publication year - 2016
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.3477
Subject(s) - attraction , mathematics , dimension (graph theory) , diffusion , nonlinear system , space (punctuation) , chemotaxis , mathematical analysis , pure mathematics , mathematical physics , physics , computer science , thermodynamics , quantum mechanics , chemistry , operating system , receptor , biochemistry , philosophy , linguistics
This paper is devoted to the attraction–repulsion chemotaxis system with nonlinear diffusion:u t = ∇ · ( D ( u ) ∇ u ) − χ ∇ · ( u ∇ v ) + ζ ∇ · ( u ∇ w ) + uf ( u ) , x ∈ Ω , t > 0 ,v t = Δv − α 1 v + β 1 u , x ∈ Ω , t > 0 ,w t = Δw − α 2 w + β 2 u , x ∈ Ω , t > 0 ,where χ > 0, ζ > 0, α i >0, β i >0 ( i = 1,2) and f ( s )≤ κ − μ s τ . In two‐space dimension, we prove the global existence and uniform boundedness of the classical solution to this model for any μ > 0. Copyright © 2015 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom