z-logo
Premium
On the fractional Schrödinger problem with non‐symmetric potential
Author(s) -
Yang Jing
Publication year - 2014
Publication title -
mathematical methods in the applied sciences
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.3309
Subject(s) - mathematics , ground state , schrödinger equation , mathematical physics , state (computer science) , lyapunov function , reduction (mathematics) , schrödinger's cat , mathematical analysis , combinatorics , quantum mechanics , geometry , physics , nonlinear system , algorithm
We study the semilinear equation( − Δ ) s u + ( 1 + ϵV ( x ) ) u = u p ,u > 0inR N ,where 0 < s < 1, 1 < p < N + 2 s N − 2 s , V ( x ) is a sufficiently smooth non‐symmetric potential with V ( x ) ∈ L ∞ ( R N ) , and ϵ > 0 is a small number. Letting U be the radial ground state of (−Δ) s U + U − U p =0 inR N , we build solutions of the formu ( x ) ∼ ∑ j = 1 m U ( x − ϑ j )for points ϑ j , j = 1,⋯, m , using a Lyapunov–Schmidt variational reduction. Copyright © 2014 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom