z-logo
Premium
A critical exponent in a degenerate parabolic equation
Author(s) -
Winkler Michael
Publication year - 2002
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.319
Subject(s) - exponent , degenerate energy levels , mathematics , critical exponent , cauchy distribution , mathematical physics , cauchy problem , combinatorics , mathematical analysis , initial value problem , physics , geometry , scaling , quantum mechanics , philosophy , linguistics
We consider positive solutions of the Cauchy problem in \documentclass{article}\usepackage{amsfonts}\begin{document}\pagestyle{empty}$\mathbb{R\,}^n$\end{document} for the equation $$u_t=u^p\,\Delta u+u^q,\quad p\geq1,\; q\geq 1$$\nopagenumbers\end and show that concerning global solvability, the number q = p + 1 appears as a critical growth exponent. Copyright © 2002 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom