Premium
The initial value problem for creeping flow of the upper convected Maxwell fluid at high Weissenberg number
Author(s) -
Renardy Michael
Publication year - 2014
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.3121
Subject(s) - weissenberg number , mathematics , mathematical analysis , stokes flow , initial value problem , degenerate energy levels , flow (mathematics) , physics , geometry , quantum mechanics
We consider the equations for time dependent creeping flow of an upper convected Maxwell fluid. For finite Weissenberg number, these equations can be reformulated as a coupled system of a hyperbolic equation for the stresses and an elliptic equation for the velocity. In the high Weissenberg number limit, however, the elliptic equation becomes degenerate. As a consequence, the initial value problem is no longer uniquely solvable if we just naively let the Weissenberg number go to infinity in the equations. In this paper, we make an a priori assumption on the stresses, which is motivated by the behavior in shear flow. We formulate a systematic perturbation procedure to solve the resulting initial value problem. Copyright © 2014 JohnWiley & Sons, Ltd.