z-logo
Premium
The initial value problem for creeping flow of the upper convected Maxwell fluid at high Weissenberg number
Author(s) -
Renardy Michael
Publication year - 2014
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.3121
Subject(s) - weissenberg number , mathematics , mathematical analysis , stokes flow , initial value problem , degenerate energy levels , flow (mathematics) , physics , geometry , quantum mechanics
We consider the equations for time dependent creeping flow of an upper convected Maxwell fluid. For finite Weissenberg number, these equations can be reformulated as a coupled system of a hyperbolic equation for the stresses and an elliptic equation for the velocity. In the high Weissenberg number limit, however, the elliptic equation becomes degenerate. As a consequence, the initial value problem is no longer uniquely solvable if we just naively let the Weissenberg number go to infinity in the equations. In this paper, we make an a priori assumption on the stresses, which is motivated by the behavior in shear flow. We formulate a systematic perturbation procedure to solve the resulting initial value problem. Copyright © 2014 JohnWiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom