z-logo
Premium
The effect of a penalty term involving higher order derivatives on the distribution of phases in an elastic medium with a two‐well elastic potential
Author(s) -
Bildhauer M.,
Fuchs M.,
Osmolovskii V. G.
Publication year - 2002
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.287
Subject(s) - omega , combinatorics , mathematics , order (exchange) , energy (signal processing) , distribution (mathematics) , mathematical physics , sigma , quadratic form (statistics) , distribution function , mathematical analysis , physics , quantum mechanics , statistics , finance , economics
We consider the problem of minimizing$${I[u,\chi,h,\sigma]=\int\nolimits_{\Omega} (\chi f_{h}^{+}({\epsilon}(u))+(1-\chi) f^{-}({\epsilon}(u))){\rm d}x+\sigma \left(\int\nolimits_{\Omega} {| \Delta u|}^{2} {\rm d}x \right)^{p/2}}$$ 0< p <1, h ∈ℝ, σ >0, among functions u :ℝ d ⊃Ω→ℝ d , u ∣∂Ω =0, and measurable characteristic functions χ:Ω→ℝ. Here ƒ + h , ƒ − , denote quadratic potentials defined on the space of all symmetric d × d matrices, h is the minimum energy of ƒ + h and ε ( u ) denotes the symmetric gradient of the displacement field. An equilibrium state û , χˆ , of I [·,·, h , σ] is termed one‐phase if χˆ ≡0 or χˆ ≡1, two‐phase otherwise. We investigate the way in which the distribution of phases is affected by the choice of the parameters h and σ. Copyright 2002 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom