z-logo
Premium
Global existence and blow‐up solution for doubly degenerate parabolic system with nonlocal sources and inner absorptions
Author(s) -
Wu Xiulan,
Gao Wenjie
Publication year - 2013
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.2813
Subject(s) - degenerate energy levels , mathematics , bounded function , domain (mathematical analysis) , dirichlet boundary condition , boundary (topology) , mathematical analysis
This paper deals with the following doubly degenerate parabolic systemu t − div | ∇ u m| p − 2 ∇ u m= ∫ Ωvr 1d x − α us 1, x ∈ Ω , t > 0 ,v t − div | ∇ v n| q − 2 ∇ v n= ∫ Ωur 2d x − β vs 2, x ∈ Ω , t > 0 , with null Dirichlet boundary conditions in a smooth bounded domain Ω ⊂  R N , where m , n  ≥ 1, p ,  q  ≥ 2, r 1 , r 2 , s 1 , s 2  ≥ 1, α , β  < 0. Under appropriate hypotheses, we prove that the solution either exists globally or blows up in finite time. Copyright © 2013 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom