z-logo
Premium
Two Tikhonov‐type regularization methods for inverse source problem on the Poisson equation
Author(s) -
Zhao Jingjun,
Liu Songshu,
Liu Tao
Publication year - 2012
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.2693
Subject(s) - tikhonov regularization , backus–gilbert method , mathematics , regularization (linguistics) , regularization perspectives on support vector machines , inverse problem , a priori and a posteriori , poisson distribution , mathematical analysis , mathematical optimization , computer science , statistics , artificial intelligence , philosophy , epistemology
In this paper, we investigate a problem of the identification of an unknown source on Poisson equation from some fixed location. A conditional stability estimate for an inverse heat source problem is proved. We show that such a problem is mildly ill‐posed and further present two Tikhonov‐type regularization methods (a generalized Tikhonov regularization method and a simplified generalized Tikhonov regularization method) to deal with this problem. Convergence estimates are presented under the a priori choice of the regularization parameter. Numerical results are presented to illustrate the accuracy and efficiency of our methods. Copyright © 2012 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom