Premium
Approximation of a population dynamics model by parabolic regularization
Author(s) -
Iannelli Mimmo,
Marinoschi Gabriela
Publication year - 2012
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.2675
Subject(s) - mathematics , multiphysics , parabolic partial differential equation , regularization (linguistics) , population , viscosity solution , mathematical optimization , population model , mathematical analysis , partial differential equation , finite element method , computer science , physics , demography , artificial intelligence , sociology , thermodynamics
The basic linear model for describing an age structured population spreading in a limited habitat is considered with the purpose of investigating an approximation procedure based on parabolic regularization. In fact, a viscosity model is introduced by considering an appropriate approximating regularized parabolic problem and it is proved that the sequence of the approximating solutions tends to the solution to the original problem. The advantage of this approach is that it leads to the numerical solution of a parabolic problem that has more stable solutions than the hyperbolic‐parabolic original problem and avoids the restrictions (compatibility conditions) needed to treat the latter. Moreover, for the solution of the approximating problem, it is possible to take advantage of established software packages dedicated to parabolic problems. Some examples of the approach are provided using COMSOL Multiphysics. Copyright © 2012 John Wiley & Sons, Ltd.