z-logo
Premium
Some generalizations of Bohr's theorem
Author(s) -
Hamada Hidetaka,
Honda Tatsuhiro
Publication year - 2012
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.2633
Subject(s) - bohr model , mathematics , holomorphic function , unit sphere , bounded function , banach space , unit (ring theory) , complex plane , pure mathematics , ball (mathematics) , domain (mathematical analysis) , generalization , combinatorics , discrete mathematics , mathematical analysis , quantum mechanics , physics , mathematics education
Let X be a complex Banach space and Y be a JB*‐triple. Let G be a bounded balanced domain in X and B Y be the unit ball in Y . Let f  :  G  →  B Y be a holomorphic mapping. In this paper, we obtain some generalization of Bohr's theorem that if a  =  f (0), then we have∑ k = 0 ∞ ∥ D φ a( a ) [D k f ( 0 ) (z k) ] ∥ / ( k ! ∥ D φ a( a ) ∥ ) < 1 for z  ∈ (1 / 3) G , where φ a  ∈ Aut( B Y ) such that φ a ( a ) = 0. Moreover, we show that the constant 1 / 3 is best possible. This result generalizes Bohr's theorem for the open unit disc Δ in the complex plane C . Copyright © 2012 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom