z-logo
Premium
Solution of perturbed Schrödinger system with critical nonlinearity and electromagnetic fields
Author(s) -
Zhang Huixing,
Liu Wenbin
Publication year - 2012
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.2550
Subject(s) - sobolev space , mathematics , nonlinear system , exponent , schrödinger's cat , critical exponent , energy (signal processing) , electromagnetic field , mathematical physics , mathematical analysis , physics , quantum mechanics , geometry , linguistics , philosophy , statistics , scaling
In this paper, we consider the following perturbed nonlinear Schrödinger system with electromagnetic fields−( ϵ ∇ + iA ( x ) )2 u + V ( x ) u = H s( | u | 2 , | v | 2) u + K ( x ) | u |2 蜧 − 2 u , x ∈ R N ,−( ϵ ∇ + iA ( x ) )2 v + V ( x ) v = H t( | u | 2 , | v | 2) v + K ( x ) | v |2 蜧 − 2 v , x ∈ R N ,where N  ≥ 3, 2  蜧   = 2 N  ∕ ( N  − 2) is the Sobolev critical exponent; A is the real vector magnetic potential; and V ( x ), K ( x ), and H ( s , t ) are continuous functions. Under certain conditions on V , H , and K , we establish some new results on the existence of the least‐energy solutions ( u ϵ , v ϵ ) for small ϵ by using variational method. Copyright © 2012 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom