z-logo
Premium
Existence and uniform decay for a non‐linear viscoelastic equation with strong damping
Author(s) -
Cavalcanti M. M.,
Domingos Cavalcanti V. N.,
Ferreira J.
Publication year - 2001
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.250
Subject(s) - viscoelasticity , mathematics , relaxation (psychology) , exponential growth , domain (mathematical analysis) , mathematical analysis , exponential decay , function (biology) , energy (signal processing) , energy method , physics , thermodynamics , statistics , quantum mechanics , psychology , social psychology , evolutionary biology , biology
This paper is concerned with the non‐linear viscoelastic equation$$|u_{t}|^{\rho} u_{tt} - \Delta u - \Delta u_{tt} + \int\nolimits_{0}^{t} g (t - \tau)\,\Delta u (\tau)\,{\rm{d}}\tau - \gamma \Delta u_{t} \,{=}\, 0$$We prove global existence of weak solutions. Furthermore, uniform decay rates of the energy are obtained assuming a strong damping Δ u t acting in the domain and provided the relaxation function decays exponentially. Copyright © 2001 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom