z-logo
Premium
On the numerical computation of blowing‐up solutions for semilinear parabolic equations
Author(s) -
Fayyad D.,
Nassif N.
Publication year - 2001
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.234
Subject(s) - combinatorics , mathematics , sequence (biology) , parabolic partial differential equation , mathematical physics , physics , mathematical analysis , partial differential equation , genetics , biology
Theoretical aspects related to the approximation of the semilinear parabolic equation: $u_t=\Delta u+f(u)$\nopagenumbers\end , with a finite unknown ‘blow‐up’ time T b have been studied in a previous work. Specifically, for ε a small positive number, we have considered coupled systems of semilinear parabolic equations, with positive solutions and ‘mass control’ property, such that: \def\ve{^\varepsilon}$$u_t\ve=\Delta u\ve+f(u\ve)v\ve\qquad v_t\ve=\Delta v\ve‐\varepsilon f(u\ve)v\ve$$\nopagenumbers\end The solution \def\ve{^\varepsilon}$$\{u\ve,v\ve\}$$\nopagenumbers\end of such systems is known to be global. It is shown that $$\|(u^\varepsilon‐u)(\, .\, ,t)\|_\infty\leq C(M_T)\varepsilon$$\nopagenumbers\end , \def\lt{\char'74}$t\leq T \lt T_b$\nopagenumbers\end where $M_T=\|u(\, .\, ,T)\|_\infty$\nopagenumbers\end and $C(M_T)$\nopagenumbers\end is given by (6). In this paper, we suggest a numerical procedure for approaching the value of the blow‐up time T b and the blow‐up solution u . For this purpose, we construct a sequence $\{M_\eta\}$\nopagenumbers\end , with $\lim_{\eta\rightarrow 0}M_\eta=\infty$\nopagenumbers\end . Correspondingly, for $\varepsilon\leq1/2C(M_\eta+1)=\eta^\alpha$\nopagenumbers\end and \def\lt{\char'74}$0\lt\alpha\lt\,\!1$\nopagenumbers\end , we associate a specific sequence of times $\{T_\varepsilon\}$\nopagenumbers\end , defined by $\|u^\varepsilon(\, .\, ,T_\varepsilon)\|_\infty=M_\eta$\nopagenumbers\end . In particular, when $\varepsilon=\eta\leq\eta^\alpha$\nopagenumbers\end , the resulting sequence $\{T_\varepsilon\equiv T_\eta\}$\nopagenumbers\end , verifies, $\|(u‐u^\eta)(\, .\, ,t)\|_\infty\leq{1\over2}(\eta)^{1‐\alpha}$\nopagenumbers\end , \def\lt{\char'74}$0\leq t\leq T_\eta\lt T_{\rm b}$\nopagenumbers\end with $\lim_{\eta\rightarrow 0}T_\eta=T_{\rm b}$\nopagenumbers\end . The two special cases of a single‐point blow‐up where $f(u)=\lambda{\rm e}^u$\nopagenumbers\end and $f(u)=u^p$\nopagenumbers\end are then studied, yielding respectively sequences $\{M_\eta\}$\nopagenumbers\end of order $O(\ln|\ln(\eta)|)$\nopagenumbers\end and $O(\{|\ln(\eta)|\}^{1/p‐1})$\nopagenumbers\end . The estimate $|T_\eta‐T_{\rm b}|/T_{\rm b}=O(1/|\ln(\eta)|)$\nopagenumbers\end is proven to be valid in both cases. We conduct numerical simulations that confirm our theoretical results. Copyright © 2001 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom