z-logo
Premium
Inverse scattering for the non‐linear Schrödinger equation: Reconstruction of the potential and the non‐linearity
Author(s) -
Weder Ricardo
Publication year - 2001
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.216
Subject(s) - mathematics , inverse scattering problem , scattering , mathematical physics , limit (mathematics) , linearity , inverse , inverse problem , operator (biology) , mathematical analysis , schrödinger equation , combinatorics , quantum mechanics , physics , geometry , biochemistry , chemistry , repressor , transcription factor , gene
In this paper we consider the inverse scattering problem for the non‐linear Schrödinger equation on the line \def\dr{{\rm d}}$$i{\partial\over\partial t}u(t,x)=‐{\dr^2\over\dr x^2}u(t,x)+V_0(x)u(t,x)+\sum_{j=1}^{\infty}V_j(x)|u|^{2(j_0+j)}u(t,x)$$\nopagenumbers\end We prove, under appropriate conditions, that the small‐amplitude limit of the scattering operator determines uniquely V j , j =0,1,… . Our proof gives also a method for the reconstruction of the V j , j =0,1,… . Copyright © 2001 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom