z-logo
Premium
A Fujita‐type global existence—global non‐existence theorem for a system of reaction diffusion equations with differing diffusivities
Author(s) -
Fila Marek,
Levine Howard A.,
Uda Yoshitaka
Publication year - 1994
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.1670171005
Subject(s) - mathematics , reaction–diffusion system , initial value problem , hilbert space , combinatorics , space (punctuation) , type (biology) , diffusion , mathematical analysis , mathematical physics , physics , thermodynamics , ecology , philosophy , linguistics , biology
Abstract In this paper we condiser non‐negative solutions of the initial value problem in ℝ N for the system\documentclass{article}\pagestyle{empty}\begin{document}$$ {\rm u}_{{\rm t = }} {\rm \delta \Delta u + v}^{\rm p}, $$\end{document}\documentclass{article}\pagestyle{empty}\begin{document}$$ {\rm v}_{{\rm t = }} {\rm \Delta v + u}^{\rm q}, $$\end{document}where 0 ⩽ δ ⩽ 1 and pq > 0. We prove the following conditions. Suppose min( p , q )≥1 but pq 1.(a) If δ = 0 then u = v =0 is the only non‐negative global solution of the system. (b) If δ>0, non‐negative non‐globle solutions always exist for suitable initial values. (c) If 0<⩽1 and max(α, β) ≥ N /2, where q α = β + 1, p β = α + 1, then the conclusion of (a) holds. (d) If N > 2, 0 < δ ⩽ 1 and max (α β) < ( N ‐ 2)/2, then global, non‐trivial non‐negative solutions exist which belong to L ∞ (ℝ N ×[0, ∞]) and satisfy 0 < u (X, t ) ⩽ c ∣x∣ −2α and 0 < v (X, t ) ⩽ c ∣x∣ −2bT for large ∣x∣ for all t > 0, where c depends only upon the initial data. (e) Suppose 0 > δ 1 and max (α, β) < N /2. If N > = 1,2 or N > 2 and max ( p , q )⩽ N /( N ‐2), then global, non‐trivial solutions exist which, after makinng the standard ‘hot spot’ change of variables, belong to the weighted Hilbert space H 1 ( K ) where K (x) exp(¼∣x∣ 2 ). They decay like e [max(α,β)‐( N /2)+ε] t for every ε > 0. These solutions are classical solutions for t > 0. (f) If max (α, β) < N /2, then threre are global non‐tivial solutions which satisfy, in the hot spot variables\documentclass{article}\pagestyle{empty}\begin{document}$$ \max (u,v)(x,t) \le c(u_0,v_0){\rm e}^{ - \frac{1}{4}|x|^2 } {\rm e}^{[\max (\alpha, \beta) - N/2) + \varepsilon]t}, $$\end{document}where where 0 < ε = ε( u 0 , v 0 ) < ( N /2)−;max(α, β). Suppose min( p , q ) ⩽ 1. (g) If pq ≥ 1, all non‐negative solutions are global. Suppose min( p , q ) < 1. (h) If pg > 1 and δ = 0, than all non‐trivial non‐negative maximal solutions are non‐global. (i) If 0 < δ ⩽ 1, pq > 1 and max(α,β)≥ N /2 all non‐trivial non‐negative maximal solutions are non‐global. (j) If 0 < δ ≥ 1, pq > 1 and max(α,β) < N /2, there are both global and non‐negative solutions.We also indicate some extensions of these results to moe general systems and to othere geometries.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here