Premium
Polygonal interface problems for the biharmonic operator
Author(s) -
Nicaise Serge
Publication year - 1994
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.1670170104
Subject(s) - biharmonic equation , mathematics , boundary value problem , operator (biology) , polygon (computer graphics) , gravitational singularity , mathematical analysis , domain (mathematical analysis) , boundary (topology) , telecommunications , biochemistry , chemistry , repressor , frame (networking) , computer science , transcription factor , gene
We study some boundary value problems on two‐dimensional polygonal topological networks, where on each face, the considered operator is the biharmonic operator. The transmission conditions we impose along the edges are inspired by the models introduced by H. Le Dret [13] and Destuynder and Nevers [9]. The boundary conditions on the external edges are the classical ones. This class of problem contains the boundary value problems for the biharmonic equation in a plane polygon (see [3, 11, 12, 18]). Conforming to the classical results cited above, we prove that the weak solution of our problem admits a decomposition into a regular part and a singular part, the latter being a linear combination of singular functions depending on the domain and the considered boundary value problem. Finally, we give the exact formula for the coefficients of these singularities.