Premium
Unique continuation for Schrödinger operators and for higher powers of the Laplacian
Author(s) -
Łaba Izabella
Publication year - 1988
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.1670100504
Subject(s) - continuation , mathematics , laplace operator , eigenvalues and eigenvectors , operator (biology) , schrödinger's cat , spectrum (functional analysis) , property (philosophy) , laplace transform , analytic continuation , pure mathematics , mathematical analysis , algebra over a field , quantum mechanics , computer science , chemistry , physics , philosophy , epistemology , repressor , transcription factor , gene , programming language , biochemistry
In this paper we consider the unique continuation property for Schrödinger operators and its application for proving the non‐existence of positive eigenvalues (embedded in the continuous spectrum). We also use the estimate given by Jerison and Kenig 9 to prove unique continuation for higher powers of the Laplace operator.