z-logo
Premium
Über das homogene Dirichlet‐Problem bei nichtlinearen partiellen Differentialgleichungen vom Typ der Boussinesq‐Gleichung
Author(s) -
Warnecke G.,
Hsiao G. C.
Publication year - 1987
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.1670090133
Subject(s) - mathematics , sobolev space , dirichlet problem , hilbert space , mathematical physics , mathematical analysis , bounded function , boundary value problem , pure mathematics
Semilinear equations of Boussinesq type, e.g. u tt + u xx − u xxxx + ( u 2 ) xx = 0, u tt + u xx − u xxxx + u x u xx = 0, or certain equations containing the squared wave operator, e.g. u xxtt − u k = 0, k ϵ N k ≥ 2, are studied. A generalized boundary value problem on bounded domains can be treated using Hilbert space methods. The linear parts of these equations are not elliptic, the latter not even hypoelliptic. A mountain pass lemma is used to prove the existence of nontrivial weak solutions. These solutions are obtained in anisotropic Sobolev spaces.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here