z-logo
Premium
Motion of a vibrating string in the presence of a convex obstacle: A free boundary problem
Author(s) -
Cabannes H.,
Neunzert H.
Publication year - 1987
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.1670090122
Subject(s) - obstacle , regular polygon , string (physics) , mathematics , point (geometry) , boundary (topology) , mathematical analysis , physics , classical mechanics , geometry , law , mathematical physics , political science
Here we study the motion of a vibrating string in the presence of an arbitrary obstacle. We show that if the string always rebounds on the concave parts of the obstacle, it can either rebound or roll on the convex parts. The latter is the case if the velocity of the string is null at the contact point just before contact, or if the contact point propagates at a characteristic speed. Four examples are given. The three first correspond to the same obstacle, a sinusoidal arc, but with different initial conditions. In the first case, the string rebounds on the whole of the obstacle and the motion is explicitly determined when it is periodic. In the second case, the string rolls on the convex part of the obstacle up to the inflexion point and then rebounds on the concave part and unwinds on the convex part. In the third case, the string is initially at rest on the obstacle; then it instantaneously leaves the concave part while it unwinds progressively on the convex part. The fourth case is similar to the third but with a different obstacle; the motion, which is periodic, is determined explicitly.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here