z-logo
Premium
The exterior dirichlet problem for the Laplace equation
Author(s) -
Ahner J. F.,
Hsiao G. C.
Publication year - 1985
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.1670070132
Subject(s) - mathematics , integral equation , summation equation , volterra integral equation , mathematical analysis , electric field integral equation , dirichlet problem , laplace's equation , dirichlet integral , integro differential equation , laplace transform , partial differential equation , dirichlet's energy , riccati equation , boundary value problem
Using a standard application of Green's theorem, the exterior Dirichlet problem for the Laplace equation in three dimensions is reduced to a pair of integral equations. One integral equation is of the second kind and the other is of the first kind. It is known that the integral equation of the second kind is not uniquely solvable, however, it has been demonstrated that the pair of integral equations has a unique solution. The present approach is based on the observation that the known function appearing in the integral equation of the second kind lies in a certain Banach space E which is a proper subspace of the Banach space of continuous complex‐valued functions equipped with the maximum norm. Furthermore, it can be shown that the related integral operator when restricted to E has spectral radius less than unity. Consequently, a particular solution to the integral equation of the second kind can be obtained by the method of successive approximations and the unique solution to the problem is then obtained by using the integral equation of the first kind. Comparisons are made between the present algorithm and other known constructive methods. Finally, an example is supplied to illustrate the method of this paper.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here