Premium
Über die Radon‐Transformation kreissymmetrischer Funktionen und ihre Beziehung zur Sommerfeldschen Theorie der Hankelfunktionen
Author(s) -
Müller C.,
Richberg R.,
Leis R.
Publication year - 1980
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.1670020110
Subject(s) - mathematics , inversion (geology) , radon transform , fourier transform , transformation (genetics) , radon , pure mathematics , integral transform , mathematical analysis , physics , quantum mechanics , paleontology , biochemistry , chemistry , structural basin , gene , biology
For the Radon transform of functions with circular symmetry an inversion formula is proved in a new and elementary way. The inversion formula combined with Fourier theory is applied to Sommer‐feld's integral for H v 1 , yielding a representation of products which generalizes Nicholson's integral for |H v (1) | 2 .