z-logo
Premium
Carleman estimate for a strongly damped wave equation and applications to an inverse problem
Author(s) -
Wu Bin
Publication year - 2012
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.1570
Subject(s) - mathematics , inverse problem , wave equation , uniqueness , mathematical analysis , hyperbolic partial differential equation , inverse , damped wave , boundary value problem , inverse hyperbolic function , boundary (topology) , kernel (algebra) , partial differential equation , geometry , pure mathematics
In this paper, we establish a Carleman estimate for a strongly damped wave equation in order to solve a coefficient inverse problems of retrieving a stationary potential from a single time‐dependent Neumann boundary measurement on a suitable part of the boundary. This coefficient inverse problem is for a strongly damped wave equation. We prove the uniqueness and the local stability results for this inverse problem. The proof of the results relies on Carleman estimate and a certain energy estimates for hyperbolic equation with strongly damped term. Moreover, this method could be used for a similar inverse problem for an integro‐differential equation with hyperbolic memory kernel. Copyright © 2012 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom