z-logo
Premium
Analysis of the power law logistic population model with slowly varying coefficients
Author(s) -
Shepherd J.J.,
Stacey A.,
Grozdanovski T.
Publication year - 2012
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.1561
Subject(s) - mathematics , logistic function , limiting , range (aeronautics) , population , power law , zero (linguistics) , statistical physics , mathematical analysis , statistics , demography , physics , philosophy , sociology , engineering , composite material , mechanical engineering , linguistics , materials science
We apply a multiscale method to construct general analytic approximations for the solution of a power law logistic model, where the model parameters vary slowly in time. Such approximations are a useful alternative to numerical solutions and are applicable to a range of parameter values. We consider two situations—positive growth rates, when the population tends to a slowly varying limiting state; and negative growth rates, where the population tends to zero in infinite time. The behavior of the population when a transition between these situations occurs is also considered. These approximations are shown to give excellent agreement with the numerical solutions of test cases. Copyright © 2012 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom