z-logo
Premium
The Helmholtz–Weyl decomposition in weighted Sobolev spaces
Author(s) -
Zaja̧czkowski Wojciech M.
Publication year - 2010
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.1347
Subject(s) - mathematics , sobolev space , decomposition , divergence (linguistics) , pure mathematics , helmholtz free energy , cartesian coordinate system , mathematical analysis , geometry , physics , quantum mechanics , ecology , linguistics , philosophy , biology
Let f ∈ L 2, − µ (ℝ 3 ), wherewhere x = ( x 1 , x 2 , x 3 ) is the Cartesian system in ℝ 3 , x ′ = ( x 1 , x 2 ), , µ∈ℝ + \ℤ. We prove the decomposition f = − ∇ u + g , with g divergence free and u is a solution to the problem in ℝ 3Given f ∈ L 2, − µ (ℝ 3 ) we show the existence of u ∈ H   1 −µ (ℝ 3 ) such thatwhereSince f, u, g are defined in ℝ 3 we need a sufficiently fast decay of these functions as | x |→∞. Copyright © 2010 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom