z-logo
Premium
Time periodic solutions of porous medium equation
Author(s) -
Zhou Jun,
Mu Chunlai
Publication year - 2010
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.1307
Subject(s) - mathematics , monotonic function , homogeneous , dirichlet boundary condition , eigenvalues and eigenvectors , operator (biology) , dirichlet distribution , lambda , mathematical analysis , porous medium , boundary (topology) , omega , boundary value problem , combinatorics , porosity , physics , biochemistry , chemistry , repressor , quantum mechanics , transcription factor , gene , engineering , geotechnical engineering , optics
In this article, we study the time periodic solutions to the following porous medium equation under the homogeneous Dirichlet boundary condition:\documentclass{article}\usepackage{amssymb}\usepackage{amsbsy}\usepackage[mathscr]{euscript}\footskip=0pc\pagestyle{empty}\begin{document} $$u_t-\Delta u^m = u^\alpha(a(x,t)-b(x,t)u^\beta)\quad {\rm{in}} \ \Omega\times (-\infty,+\infty).$$\end{document} The existence of nontrivial nonnegative solution is established provided that 0≤α< m . The existence is also proved in the case α= m but with an additional assumption \documentclass{article}\usepackage{amssymb}\usepackage{amsbsy}\usepackage[mathscr]{euscript}\footskip=0pc\pagestyle{empty}\begin{document} $\mathop{\min}\nolimits_{\overline{\Omega}\times[0,T]}a(x,t){>}{\lambda}_1$\end{document} , where λ 1 is the first eigenvalue of the operator −Δ under the homogeneous Dirichlet boundary condition. We also show that the support of these solutions is independent of time by providing a priori estimates for their upper bounds using Moser iteration. Further, we establish the attractivity of maximal periodic solution using the monotonicity method. Copyright © 2010 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom