z-logo
Premium
Localization for a doubly degenerate parabolic equation with strongly nonlinear sources
Author(s) -
Xiang Zhaoyin
Publication year - 2010
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.1236
Subject(s) - degenerate energy levels , mathematics , nonlinear system , parabolic partial differential equation , mathematical analysis , mathematical physics , partial differential equation , physics , quantum mechanics
In this paper, we study the strict localization for the doubly degenerate parabolic equation with strongly nonlinear sources,\documentclass{article}\footskip=0pc\pagestyle{empty}\begin{document}${\partial}_tu={\rm{div}}(|\nabla u^m|^{p-2}\nabla u^m)+u^q, \quad p{>}2,m,q{>}1$\end{document}We prove that, for non‐negative compactly supported initial data, the strict localization occurs if and only if q ⩾ m ( p −1). Copyright © 2009 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom