z-logo
Premium
On the solutions of a class of iterated generalized Bers–Vekua equations in Clifford analysis
Author(s) -
Berglez P.
Publication year - 2009
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.1207
Subject(s) - mathematics , clifford analysis , iterated function , operator (biology) , class (philosophy) , cauchy–riemann equations , clifford algebra , pure mathematics , function (biology) , algebra over a field , type (biology) , mathematical analysis , mathematical physics , dirac operator , chemistry , ecology , biochemistry , repressor , artificial intelligence , evolutionary biology , biology , computer science , transcription factor , gene
We consider functions with values in the Clifford algebra Cl p,q which are solutions of a certain class of the iterated generalized Bers–Vekua equation D m w =0 with Dw = ∂ w + c w̄ where \documentclass{article}\usepackage{amssymb}\usepackage{amsbsy}\usepackage[mathscr]{euscript}\footskip=0pc\pagestyle{empty}\begin{document}$\partial={\sum\nolimits_{j=0}^{n}}e_j\,\partial/{\partial x_j}$\end{document} is the generalized Cauchy–Riemann operator and x = x 0 + x 1 e 1 +… x n e n . We prove that any such function w has an Almansi‐type decomposition of the form w = v 0 + x 0 v 1 +···+ x   m− 1 0v m− 1 where the functions v j , j =0,1,…, m− 1, are solutions of the generalized Bers–Vekua equation Dv =0. Copyright © 2009 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom